NATIONAL STANDARDS FOR PHYTOSANITARY MEASURES

NSPM: 31

Methodologies of samples of consignments 2013

(This standard is approved by (the NPPO and) the Quarantine Committee of Nepal, chaired by the secretary of the Ministry of Agriculture Development on 1st December 2013 and, is submitted by National Plant Quarantine Program to the National Notification Authority to be notified to the WTO member states)

Table of Contents

	1.1 Scope	1
	1.2 References	1
	1.3 Definitions	1
	1.4 Outlines of requirements	
2	. Background	
3	. Requirements	3
	3.1 Lot identification	3
	3.2 Sample unit	3
	3.3 Statistical and non-statistical sampling	4
	3.3.1 Statistically based sampling	4
	3.3.2 Non-statistically based sampling	7
4	. Selecting a sampling method	8
5	. Sample Size Determination	9
6	. Varying Level of Detection1	0
7	. Outcome of sampling1	1
Α	nnexure - I: Details of sampling procedures for different commodities1	2

1. Introduction

1.1 Scope

This standard provides guidance to National Plant Protection Organizations (NPPOs) in selecting appropriate sampling methodologies for inspection or testing of consignments to verify compliance with phytosanitary requirements. This standard does not give guidance on field sampling (for example, as required for surveys). NSPM preparation based on guidelines and recommendations developed within the framework of the IPPC. This standard also adopted the principles, recommendations and format of ISPM to achieve international harmonization of phytosanitary measures with the aim to facilitate and minor changes made in sampling to clarify local practices.

1.2 References

Cochran, W.G. 1977. Sampling techniques. 3rd edn. New York, John Wiley & Sons. 428 pp.

ISPM 1. 2006. Phytosanitary principles for the protection of plants and the application of phytosanitary measures in international trade. Rome, IPPC, FAO.

ISPM 5. Glossary of phytosanitary terms. Rome, IPPC, FAO.

ISPM 11. 2004. Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms. Rome, IPPC, FAO.

ISPM 20. 2004. Guidelines for a phytosanitary import regulatory system. Rome, IPPC, FAO.

ISPM 21. 2004. Pest risk analysis for regulated non-quarantine pests. Rome, IPPC, FAO.

ISPM 23, 2005, Guidelines for inspection, Rome, IPPC, FAO.

ISPM 31. 2008. *Methodologies for sampling of consignments*

1.3 Definitions

Definitions of phytosanitary terms used in the present standard can be found in ISPM 5 (*Glossary of phytosanitary terms*).

1.4 Outlines of requirements

The sampling methodologies used by NPPOs in selecting samples for the inspection of consignments of commodities moving in international trade are based on a number of sampling concepts. These include parameters such as acceptance level, level of detection, confidence level, efficacy of detection and sample size.

The application of statistically based methods, such as simple random sampling, systematic sampling, stratified sampling, sequential sampling or cluster sampling, provides results with a statistical confidence level. Other sampling methods that are not statistically based, such as convenience sampling, haphazard sampling or selective sampling, may provide valid results in determining the presence or absence of a regulated pest(s) but no statistical inference can be made on their basis. Operational limitations will have an effect on the practicality of sampling

under one or another method.

In using sampling methodologies, NPPOs accept some degree of risk that non-conforming lots may not be detected. Inspection using statistically based methods can provide results with a certain level of confidence only and cannot prove the absence of a pest from a consignment.

2. Background

This standard provides the basis for, and complements, NSPM: Guidelines for a phytosanitary import regulatory system and ISPM 23:2005. Inspection of consignments of regulated articles moving in trade is an essential tool for the management of pest risks and is the most frequently used phytosanitary procedure worldwide to determine if pests are present and/or the compliance with phytosanitary import requirements. It is usually not feasible to inspect entire consignments, so phytosanitary inspection is performed mainly on samples obtained from a consignment. It is noted that the sampling concepts presented in this standard may also apply to other phytosanitary procedures, notably selection of units for testing. Sampling of plants, plant products and other regulated articles may occur prior to export, at the point of import, or other points as determined by NPPOs.

It is important that sampling procedures established and used by NPPOs are documented and transparent, and take into account the principle of minimum impact (ISPM 1:2006), particularly because inspection based on sampling may lead to the refusal to issue a phytosanitary certificate, refusal of entry, or treatment or destruction of a consignment or part of a consignment. Sampling methodologies used by NPPOs will depend on the sampling objectives (for example, sampling for testing) and may be solely statistically based or developed noting particular operational constraints. Methodologies developed to achieve the sampling objectives, within operational constraints, may not yield the same statistical confidence levels in the results as fully statistically based methods, but such methods may still give valid results depending on the desired sampling objective. If the sole purpose of sampling is to increase the chance of finding a pest, selective or targeted sampling is also valid.

Objectives of sampling of consignments

Sampling of consignments is done for inspection and/or testing in order to:

- detect regulated pests
- provide assurance that the number of regulated pests or infested units in a consignment does not exceed the specified tolerance level for the pest
- provide assurance of the general phytosanitary condition of a consignment
- detect organisms for which a phytosanitary risk has not yet been determined
- optimize the probability of detecting specific regulated pests
- maximize the use of available sampling resources
- gather other information such as for monitoring of a pathway
- verify compliance with phytosanitary requirements

determine the proportion of the consignment infested.

It should be noted that inspection and/or testing based on sampling always involves a degree of error. The acceptance of some probability that the pests are present is inherent in the use of sampling procedures for inspection and/or testing. Inspection and/or testing using statistically based sampling methods can provide a level of confidence that the incidence of a pest is below a certain level, but it does not prove that a pest is truly absent from a consignment.

3. Requirements

3.1 Lot identification

A consignment may consist of one or more lots. Where a consignment comprises more than one lot, the inspection to determine compliance may have to consist of several separate visual examinations, and therefore the lots will have to be sampled separately. In such cases, the samples relating to each lot should be segregated and identified in order that the appropriate lot can be clearly identified if subsequent inspection or testing reveals non-compliance with phytosanitary requirements. Whether or not a lot will be inspected should be determined using factors stated in NSPM: Guidelines for inspection (section 1.5). A lot to be sampled should be a number of units of a single commodity identifiable by its homogeneity in factors such as:

- Origin
- grower
- packing facility /types
- species, variety, or degree of maturity
- exporter
- importer
- area of production
- season of production
- regulated pests and their characteristics
- treatment at origin
- type of processing.

The criteria used by the NPPO to distinguish lots should be consistently applied for similar consignments. Treating multiple commodities as a single lot for convenience may mean that statistical inferences can not be drawn from the results of the sampling.

3.2 Sample unit

Sampling first involves the identification of the appropriate unit for sampling (for example, a fruit, stem, bunch, unit of weight, bag or carton). The determination of the sample unit is affected by issues related to homogeneity in the distribution of pests through the commodity, whether the pests are sedentary or mobile, how the consignment is packaged, intended use, and operational considerations. For example, if determined solely on pest biology, the appropriate sample unit might be an individual plant or plant product in the case of a low-mobility pest, whereas in the case of mobile pests, a carton or other commodity container may be the preferred sample unit.

However, when inspection is to detect more than one type of pest, other considerations (for example, practicality of using different sample units) may apply. Sample units should be consistently defined and independent from each other. This will allow NPPOs to simplify the process of making inferences from the sample to the lot or consignment from which the sample was selected.

3.3 Statistical and non-statistical sampling

The sampling method is the process approved by the NPPO to select units for inspection and/or testing. Sampling for phytosanitary inspection of consignments or lots is done by taking units from the consignment or lot without replacement of the units selected¹. NPPOs may choose either a statistically based or non-statistical sampling methodology.

Sampling based on statistical or targeted methods is designed to facilitate the detection of a regulated pest(s) in a consignment and/or lot.

3.3.1 Statistically based sampling

Statistically based sampling methods involve the determination of a number of interrelated parameters and the selection of the most appropriate statistically based sampling method.

3.3.1.1 Parameters and related concepts

Statistically based sampling is designed to detect a certain percentage or proportion of infestation with a specific confidence level, and thus requires the NPPO to determine the following interrelated parameters: acceptance number, level of detection, confidence level, efficacy of detection and sample size. The NPPO may also establish a tolerance level for certain pests (for example, regulated non-quarantine pests).

3.3.1.1.1 Acceptance number

The acceptance number is the number of infested units or the number of individual pests that are permissible in a sample of a given size before phytosanitary action is taken. Many NPPOs determine this number to be zero for quarantine pests. For example, if the acceptance number is zero and an infested unit is detected in the sample then phytosanitary action will be taken. It is important to appreciate that a zero acceptance number within a sample does not imply a zero tolerance level in the consignment as a whole. Even if no pests are detected in the sample there remains a probability that the pest may be present in the remainder of the consignment, albeit at a very low level. The acceptance number is linked to the sample. The acceptance number is the number of infested units or the number of individual pests that are permissible in the sample whereas the tolerance level (see section 3.1.1.6) refers to the status of the entire consignment.

3.3.1.1.2 Level of detection

The level of detection is the minimum percentage or proportion of infestation that the sampling

_

¹ Sampling without replacement is selecting a unit from the consignment or lot without replacing the unit before the next units are selected. Sampling without replacement does not mean that a selected item cannot be returned o a consignment (except for destructive sampling); it means only that the inspector should not return it before selecting the remainder of the sample.

methodology will detect at the specified efficacy of detection and level of confidence and which the NPPO intends to detect in a consignment.

The level of detection may be specified for a pest, a group or category of pests, or for unspecified pests. The level of detection may be derived from:

- a decision based on pest risk analysis to detect a specified level of infestation (the infestation determined to present an unacceptable risk)
- an evaluation of the effectiveness of phytosanitary measures applied before inspection
- an operationally based decision that inspection intensity above a certain level is not practical.

3.3.1.1.3 Confidence level

The confidence level indicates the probability that a consignment with a degree of infestation exceeding the level of detection will be detected. A confidence level of 95% is commonly used. The NPPO may choose to require different confidence levels depending on the intended use of the commodity. For example, a higher confidence level for detection may be required for commodities for planting than for commodities for consumption, and the confidence level may also vary with the strength of the phytosanitary measures applied and historical evidence of non-compliance. Very high confidence level values quickly become difficult to achieve, and lower values become less meaningful for decision-making. A 95% confidence level means that the conclusions drawn from the results of sampling will detect a non-compliant consignment, on average, 95 times out of 100, and therefore, it may be assumed that, on average, 5% of non-compliant consignments will not be detected.

3.1.1.4 Efficacy of detection

The efficacy of detection is the probability that an inspection or test of an infested unit(s) will detect a pest. In general the efficacy should not be assumed to be 100%. For example, pests may be difficult to detect visually, plants may not express symptoms of disease (latent infection), or efficacy may be reduced as a result of human error. It is possible to include lower efficacy values (for instance, an 80% chance of detecting the pest when an infested unit is inspected) in the determination of sample size.

3.3.1.1.5 Sample size

The sample size is the number of units selected from the lot or consignment that will be inspected or tested. Guidance on determining the sample size is provided in section 5.

3.1.1.6 Tolerance level

Tolerance level refers to the percentage of infestation in the entire consignment or lot that is the threshold for phytosanitary action.

Tolerance levels may be established for regulated non-quarantine pests (as described in NSPM: Pest risk analysis for regulated non-quarantine pests, section 4.4) and may also be established for conditions related to other phytosanitary import requirements (for example, bark on wood or soil on plant roots).

Most NPPOs have a zero tolerance level for all quarantine pests, taking into account probabilities of pest presence in the non-sampled units as described in section 3.1.1.1. However, an NPPO maydetermine to establish a tolerance level for a quarantine pest based on pest risk analysis (as describedin NSPM: pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms) and then determine sampling rates from this. For example, NPPOs may determine a tolerance level that is greater than zero because small numbers of the quarantine pest may be acceptable if the establishment potential of the pest is considered low or if the intended end use of the product (for example, fresh fruit and vegetables imported for processing) limits the potential of entry of the pest into endangered areas.

3.3.1.2 Links between the parameters and tolerance level

The five parameters (acceptance number, level of detection, confidence level, efficacy of detection and sample size) are statistically related. Taking into account the established tolerance level, the NPPO should determine the efficacy of the detection method used and decide upon the acceptance number inthe sample; any two of the remaining three parameters can also be chosen, and the remainder will be determined from the values chosen for the rest.

If a tolerance level greater than zero has been established, the level of detection chosen should be equal to (or less than, if the acceptance number is greater than zero) the tolerance level to ensure that consignments having an infestation level greater than the tolerance level will be detected with the specified confidence level.

If no pests are detected in the sample unit, then the percentage of infestation in the consignment can not be stated beyond the fact that it falls below the level of detection at the stated confidence level. If the pest is not detected with the appropriate sample size, the confidence level gives a probability that the tolerance level is not exceeded.

3.1.3 Statistically based sampling methods

3.3.1.3.1 Simple random sampling

Simple random sampling results in all sample units having an equal probability of being selected from the lot or consignment. Simple random sampling involves drawing the sample units in accordance with a tool such as a random numbers table. The use of a predetermined randomization process is what distinguishes this method from haphazard sampling (described in section 3.2.2).

This method is used when little is known about the pest distribution or rate of infestation. Simple random sampling can be difficult to apply correctly in operational situations. To use this method, each unit should have an equal probability of selection. In cases where a pest is not distributed randomly through the lot, this method may not be optimal. Simple random sampling may require greater resources than other sampling methods. The application can be dependent on the type and/or configuration of the consignment.

3.1.3.2 Systematic sampling

Systematic sampling involves drawing a sample from units in the lot at fixed, predetermined intervals. However, the first selection must be made at random through the lot. Biased results are possible if pests are distributed in a manner similar to the interval chosen for sampling.

Two advantages of this method are that the sampling process may be automated through machinery and that it requires the use of a random process only to select the first unit.

3.3.1.3.3 Stratified sampling

Stratified sampling involves separating the lot into separate subdivisions (that is, strata) and then drawing the sample units from each and every subdivision. Within each subdivision, sample units are taken using a particular method (systematic or random). Under some circumstances, different numbers of sample units may be taken from each subdivision – for instance, the number of sample units may be proportional to the size of the subdivision, or based on prior knowledge concerning the infestation of the subdivisions.

If at all feasible, stratified sampling will almost always improve detection accuracy. The smaller variation associated with stratified sampling yields more accurate results. This is especially true when infestation levels may vary across a lot depending on packing procedures or storage conditions. Stratified sampling is the preferred choice when knowledge about the pest distribution is presumed and operational considerations will allow it.

3.3.1.3.4 Sequential sampling

Sequential sampling involves drawing a series of sample units using one of the above methods. After each sample (or group) is drawn, the data are accumulated and compared with predetermined ranges to decide whether to accept the consignment, reject the consignment or continue sampling.

This method can be used when a tolerance level greater than zero is determined and the first set of sample units does not provide sufficient information to allow a decision to be made on whether or not the tolerance level is exceeded. This method would not be used if the acceptance number in a sample of any size is zero. Sequential sampling may reduce the number of samples required for a decision to be made or reduce the possibility of rejecting a conforming consignment.

3.3.1.3.5 Cluster sampling

Cluster sampling involves selecting groups of units based on a predefined cluster size (for example, boxes of fruit, bunches of flowers) to make up the total number of sample units required from the lot. Cluster sampling is simpler to evaluate and more reliable if the clusters are of equal size. It is useful if resources available for sampling are limited and works well when the distribution of pests is expected to be random.

Cluster sampling can be stratified, and can use either systematic or random methods for selecting the groups. Of the statistically based methods, this method is often the most practical to implement.

3.3.1.3.6 Fixed proportion sampling

Sampling a fixed proportion of the units in the lot (for example, 2%) results in inconsistent levels of detection or confidence levels when lot size varies. As shown in Appendix 5, fixed proportion sampling results in changing confidence levels for a given level of detection, or in changing levels of detection for a given confidence level.

3.3.2 Non-statistically based sampling

Other sampling methods that are not statistically based, such as convenience sampling, haphazard sampling or selective or targeted sampling, may provide valid results in determining the presence or absence of a regulated pest(s). The following methods may be used based on

specific operational considerations or when the goal is purely detection of pests.

3.3.2.1 Convenience sampling

Convenience sampling involves selecting the most convenient (for example, accessible, cheapest, fastest) units from the lot, without selecting units in a random or systematic manner.

3.3.2.2 Haphazard sampling

Haphazard sampling involves selecting arbitrary units without using a true randomization process. This may often appear to be random because the inspector is not conscious of having any selection bias. However, unconscious bias may occur, so that the degree to which the sample is representative of the lot is unknown.

3.3.2.3 Selective or targeted sampling

Selective sampling involves deliberately selecting samples from parts of the lot most likely to be infested, or units that are obviously infested, in order to increase the chance of detecting a specific regulated pest. This method may rely on inspectors who are experienced with the commodity and familiar with the pest's biology. Use of this method may also be triggered through a pathway analysis identifying a specific section of the lot with a higher probability of being infested (for example, a wet section of timber may be more likely to harbour nematodes). Because the sample is targeted, and hence statistically biased, a probabilistic statement about the infestation level in the lot can not be made. However, if the sole purpose of sampling is to increase the chance of finding a regulated pest(s), this method is valid. Separate samples of the commodity may be required to meet general confidence in detection of other regulated pests. The use of selective or targeted sampling may limit the opportunities to derive information about the overall pest status of the lot or consignment, because sampling is focused on where specific regulated pests are likely to be found not on the remainder of the lot or consignment.

4. Selecting a sampling method

In most cases the selection of an appropriate sampling method is necessarily dependent on information available about pest incidence and distribution in the consignment or lot as well as the operational parameters associated with the inspection situation in question. In most phytosanitary applications operational limitations will dictate the practicality of sampling under one or another method. Subsequently determining the statistical validity of practical methods will narrow the field of alternatives.

The sampling method that is ultimately selected by the NPPO should be operationally feasible and be the most appropriate to achieve the objective and be well documented for transparency. Operational feasibility is clearly linked to judgments concerning situation-specific factors, but should be consistently applied.

If sampling is undertaken to increase the chance of detecting a specific pest targeted sampling (described in section 3.2.3) may be the preferred option as long as the inspectors can identify the section(s) of the lot with a higher probability of being infested. Without this knowledge, one of the statistically based methods will be more appropriate. Non-statistically based sampling methods do not result in each unit having an equal probability of being included in the sample and do not allow for quantification of a confidence level or level of detection.

Statistically based methods will be appropriate if sampling is undertaken to provide information about the general phytosanitary condition of a consignment, to detect multiple quarantine pests or to verify compliance with phytosanitary requirements.

In selecting a statistically based method, consideration may be given to how the consignment has been treated in harvesting, sorting and packing, and the likely distribution of the pest(s) in the lot. Sampling methods may be combined: for instance, a stratified sample may have either random or systematic selection of sample units (or clusters) within strata.

If sampling is undertaken to determine whether a specific non-zero tolerance level has been exceeded, a sequential sampling method may be appropriate.

Once a sampling method has been selected and correctly applied, repeating the sampling with the aim of achieving a different result is unacceptable. Sampling should not be repeated unless considered necessary for specific technical reasons (for example, suspected incorrect application of sampling methodology).

National Plant Quarantine Program has prepared Operational Manual for Import and Export Certification in 2005. In the manual, procedures for samplings; sampling different commodities like seeds for propagation, cut flowers, fruit and vegetables have been described in detail (<u>Annexture-1</u>, <u>attached</u>). For the sample size of seeds, sampling procedures prescribed by International Seed Testing Association (ISTA) Rules,1976, have been recommended. Attached operational manual (see appendix-1) which is slight modification of operation manual prepared by NPQP is recommended to follow.

5. Sample Size Determination

To determine the number of samples to be taken, the NPPO should select a confidence level (for example, 95%), a level of detection (for example, 5%) and an acceptance number (for example, zero), and determine the efficacy of detection (for example, 80%). From these values and the lot size, a sample size can be calculated. Appendixes 2–5 set out the mathematical basis for sample size determination. Section 3.1.3 of this standard provides guidance on the most appropriate statistical based sampling method when considering the distribution of the pest in the lot.

5.1 Pests distribution unknown in the lot

Because sampling is done without replacement and the population size is finite, the hypergeometric distribution should be used to determine the sample size. This distribution gives a probability of detecting a certain number of infested units in a sample of a given size drawn from a lot of a given size, when a specific number of infested units exist in the lot (see Appendix

2). The number of infested units in the lot is estimated as the level of detection multiplied by the total number of units in the lot.

As lot size increases, the sample size required for a specific level of detection and confidence level approaches an upper limit. When the sample size is less than 5% of the lot size, the sample size can be calculated using either the binomial or Poisson distribution (see Appendix 3). All three distributions (hypergeometric, binomial and Poisson) give almost identical sample sizes for specific confidence and detection levels with large lot sizes, but binomial and Poisson distributions are easier to calculate.

5.2 Pest distribution aggregated in the lot

Most pest populations are aggregated to some degree in the field. Because commodities may be harvested and packed in the field without being graded or sorted, the distribution of infested units in the lot may be clustered or aggregated. Aggregations of infested units of a commodity will always lower the likelihood of finding an infestation. However, phytosanitary inspections are aimed at detection of infested units and/or pest(s) at a low level. The effect of aggregation of the infested units on the efficacy of detection of a sample and on the required sample size is small in most cases. When NPPOs identify that there is a high likelihood that there will be aggregation of infested units in the lot a stratified sampling method may help increase the chance of detecting an aggregated infestation.

When pests are aggregated, the calculation of sample size should ideally be performed using a beta-binomial distribution (see Appendix 4). However, this calculation requires knowledge of the degree of aggregation, which is generally not known and therefore this distribution may not be practical for general use. One of the other distributions (hypergeometric, binomial or Poisson) can be used; however, the confidence level of the sampling will decline as the degree of aggregation increases.

6. Varying level of detection

The choice of a constant level of detection may result in a varying number of infested units entering with imported consignments because lot size varies (for example, a 1% infestation level of 1000 units corresponds to 10 infested units, while a 1% infestation level of 10,000 units corresponds to 100 infested units). Ideally the selection of a level of detection will reflect in part the number of infested units entering on all consignments within a particular period of time. If NPPOs want to manage the number of infested units entering with each consignment as well, a varying level of detection may be used. A tolerance level would be specified in terms of a number of infested items per consignment, and the sample size would be set in order to give the

desired confidence and detection levels.

7. Outcome of sampling

The outcome of activities and techniques related to sampling may result in phytosanitary action being taken (further details can be found in NSPM: Guidelines for inspection).

Annexure - I: Details of sampling procedures for different commodities

A. Seed for propagation

Sampling

- The sampling of the seed for propagation shall be in accordance with the sampling procedures prescribed by International Seed Testing Association (ISTA) Rules, 1976.
- The maximum size of seed lot for agricultural and horticultural crops is 20 MTs for seeds of the same size of wheat or larger. However for small size seeds the lot size is 10 MTs. For tree species with seeds of the size of *Fagus* species or larger, the maximum is 5 MTs, and for seeds still smaller in size it is 5 MTs.

Sampling regime for seed lots in bulk

Lot size	No. of primary samples required to be drawn
Upto 500 kg.	Atleast five primary samples.
501 to 3000 kg.	One primary sample for each 300 kg.but not less than 5 samples
3001 to 20,000 kg.	One primary sample for each 500 kg but not less than 10 samples

Sampling for seed lots in bags or containers of uniform size

Lot size	Samples requiredto be drawn
upto 5 containers	Sample from each container.
6 -30 containers	Sample in every 3 containers but not less than 5 samples are drawn
31 or more containers	sample in 1 of every 5 containers but not less than 10

- Sampling is usually carried out by the slotted tube sampler in case of bagged cargo. In case of sampling of seed in bulk from storage bins a sampler is used. Alternatively Nobbe Trier is used for sampling of seed from bagged cargo.
- In case of propagating plant material such as bulbs/ tubers/ cuttings/ saplings etc., atleast 0.1% of units are sampled for inspection in case of bulk consignments.
- In case of small consignments cent per cent inspection is carried out.
- ISTA rules provide minimum weight of submitted samples for various agricultural, horticultural and tree seeds as given below\

Minimum weight of submitted samples for various crop species as prescribed by ISTA

Minimum weight of submitted samples	Crop species
1000 gms	Avena sativa, Cajanu scajan, Cicer arietinum, Cucurbita spp., Dolichos lablab, Fagus sylvatica, Glycine max, Gossypium spp.,Hordeum vulgare, Leucaenaleucocephala, Phaseolus spp.,Pinuspinea, Pisum sativum, Secalecereale, Vigna unguiculata, Triticum aestivum, Vicia spp.,Zea maydis
900 gms	Prunusavium, Sorghum vulgare
500 gms	Beta vulgaris, Prunusserotina
400gms	Oryza sativa, Calopogonium mucunoides
250 gms	Sorghum sudanense, Spinacea oleracea, Trifolium subterraneum
200 gms	Sinapis alba
150 gms	Capsicum spp., Cucumis melo, Cucumis sativus, Llinumus itatissimum, Lycopersicaon esculentum, Pennisetum typhoides, Solanum melongena
100 gms	Brassica napus, Brassica oleracea, Brassica rapa, Pinuscaribaea
80 gms	Allium cepa, Stylosanthes spp.
70 gms	Allium porum, Sesamumindicum
60 gms	Cuminumcyminum, Trifoliumalexandrium
50 gms	Allium fistulosum ,Cichorium intyvus, Malus spp., Medicago lupulina, Medicago sativa, Meliolotus spp., Rosa spp., Trifolium pretense.
40 gms	Brassica chinensis, Brassica nigra, Cichoriu mendivia, Picea abies
30 gms	Daucus carota, Lactuca sativa, Ulmus spp.
25 gms	Apium graveolens, Nicotiana tabacum,

B. Grain/ pulses for consumption

The sampling procedures for such consignments in bags and in bulk is given below:

Sampling for bagged cargo of cereal grains/ pulses

Lot size	No. of bags to be sampled*
Upto 100 bags	20
101 to 300 bags	32
301 to 500 bags	50
501 to 1000 bags	80
1001 and above	125

^{*} If high risk, double the number of sample

Sampling of grains/ pulses in bulk

Lot size	No. of bags to be sampled
Upto 300 MT	30
301 to 1000 MT	50
1001 and above	100

- The samples shall be drawn at random from bags with the help of a slotted tube sampler or by the corn sampler in case of large size seed as that of maize, pea, beans and gram etc.
- Sampling of the grain from the bins shall be carried out by a bin sampler or thermosampler.
- In case of milled plant products such as wheat, flour, maida, spices powder, oilseed extracts etc. the sampling by hand is practised.
- A scoop or pelican type sampler is used for drawing the representative samples from the convoy or at different intervals.
- Each of the primary samples drawn shall be thoroughly mixed and balanced to constitute a
 homogeneous composite sample. From the composite sample a sample of 1 kg. isdrawn
 and submitted in sealed polyethylene covers with appropriate label for detailed laboratory
 testing. A minimum of 3 samples are drawn for commodity for detailed laboratory testing.
- In case consignment is imported in containers atleast one sample shall be drawn for each container.

Sampling for root crops, bulbs, corms and roots

Quantity in a lot (kg)	Amount of sample to be inspected
Less than 10 kg	Inspect in total
11-100 kg	Inspect at least 10%, but at least 100 PCs
Over 101 kg	Inspect at least 5 %, but not more than 200 PCs

Sampling for cut flowers

Number of cut flowers in a consignment	Number of plants to be inspected*
Less than 100	Inspect all
101 – 500	30 %, at least 120
500 – 2000	10 % , at least 80
More than 2000	5 %, not more than 200

Double the sample if risk is high

E. Potted plants

Plants in pots, whether in flower or not, may be host plants for many pests and diseases.. The intensity and sampling depends on risk category of the plant species.

Pay attention on living insects, mainly thrips and leafminers, and on any symptom of virus or bacterial disease.

Each species and variety shall be inspected separately.

Sampling of potted plants

Number of plants in a lot	Number of plants to be inspected
Less than 50	Inspect in total
51-200	10 % or at least 8
201-500	5% or at least 15
More than 500	3% or at least 30

- Shake or tap sampled plants over the white inspection surface. Tap with enough force to dislodge any insect larvae, adult insects, or fecal material.
- Examine the inspection surface to catch thrips, aphids, and early instars larvae. Look for anything that moves and for fecal material that may have been dislodged.
- Pay attention to growing medium in pots, which should be clean growing peat without organic soil.

F. Small plants and cuttings of ornamentals and vegetable plants

Small plants and cuttings of ornamentals need to be inspected carefully. Special attention shall be paid on chrysanthemum, gerbera, gypsophila, impatiens and on small plants of all vegetables (tomato, cucumber, melons etc).

Each species and variety shall be inspected separately.

Small commodities (less than 100 pieces) shall be inspected in total. The larger consignments shall be selected at random but at least 100 piecesshall be inspected.

Sampling of plants/ cuttings of ornamentals/ vegetable plants

Number of plants/ cuttings in a lot	Number of plants/ cuttings to be inspected *
Less than 500	Inspect all
501-2000	15 %, at least 150
2001-10000	8%, at least 300
Over 10000	5%, not more than 500

^{*} If high risk more samples

Pay attention especially on thrips species, leafminers and whiteflies.

Any sign of discoloration may indicate virus of bacterial disease. In these cases samples shall be taken for laboratory analyses.

In case infestation is suspected, but cannot be proved or indicated, small plants and cuttings may be ordered to be grown in post-entry quarantine.

G. Nursery products (fruit trees, small plants of berries and grape wine, ornamental trees, perennials)

Nursery products are usually imported with roots protected by soil or peat or mixture or both. Pay attention to soil, and if it's field soil, take samples for nematode analyses. Amount of field soil in roots shall not exceed 1% in weight.

Inspect small commodities in total.

In case of larger commodities select at random 10% of plants for inspections but make sure that you select at least 50 pieces.

Open soil or peat balls, inspect the roots, which may be infested by nematodes or bacteria (knots, malformations).

Sampling for nursery products

Number of plants in a lot	Number of plants to be inspected
Less than 50	Inspect all
51-200	10%, at least 15
201-500	5%, at least 20
Over 500	3%, at least 30

Pay attention to root knots, discoloured stems, dark spots, loose bark in stems. Problems with nursery plants are viral and bacterial diseases, which are difficult to observe and identify, and which may appear only after certain period of growing.

Pay attention to plant species which are known as host plants of known quarantine pests

H. Fruits, berries, vegetables

All imported consignments shall be inspected.

Each plant species and variety is inspected separately.

Products are usually transported in wooden or cardboard cages. Pay attention to possible soil or debris in bottom of cages and on packaging material (hay, plant material etc).

Some fruits and vegetables (tomato, cucumber, melons etc) may be attached with leaves or stems, which may be infested by insects or diseases.

It is important that the sample is a good representative of the whole shipment. Keep in mind that in containerized shipments, trader may put the cleanest boxes at the tailgate section of the container.

Sampling of fruits/ berries/ vegetables received in wooden and cardboard cages

Number of units (cages etc)	Number of units to be sampled for inspection
Less than 10	All units
11 – 100	10 % or at least 5
101-1000	2% or at least 10
More than 1000	1 % or at least 20

Pay attention to any sign symptoms of disease (rots, spots, blemishes), insects, extraneous plant

I. Potato

All consignments of potato intended to be imported shall be inspected. Each lot should be inspected separately. If potatoes are packed, the sack (usually 20-25 kg for ware potatoes and 50 kg for seed potatoes) are used as unit for inspection. If the potatoes are in bulk, it may be impossible to identify individual lots and the whole consignment should be considered as one lot. Special attention shall be paid on possible soil and debris inside and between sacks, and in container.

Sampled tubers shall be cut in sheets by knife, starting from heel end. Purpose is to verify possible visual symptoms of bacterial diseases (*Clavibacter or Ralstonia*) or fungus diseases. For visual inspection at least 200 tubers shall be cut of each lot.

If symptoms of infestation are found, or inspector suspects infestation but can not verify it by visual inspection, samples are taken to laboratory identification. For laboratory analyses the heels ands of at least 200 tubers of each lot has to be cut.

Samples shall be taken also of loose soil found in sacks, for potato nematode analyses.

Seed potato shall be inspected using the sampling and testing guidelines of ISTA.

Inspecting and sampling

These are numbers used for at random inspection. If inspector finds any sign of suspected infestation, inspection shall be targeted and more samples shall be taken.

Sampling for table, ware and industrial potato

Size of consignment	Number of bags (ca 20 kg) to be inspected	Size of sample
One container or wagon Less than 30 ton and	If 1 lot - inspect 5 bags If 2-5 lots - 1 sack per lot	In total 200 tubers, collected from inspected bags
consists of more than 1 lot	If more than 5 lots - less than 1 bag per lot	
30 - 50 ton	5 bags per lot	In total 200 tubers, collected from each inspected bags
50 - 200 ton	1 bag per each 10 tons	In total 200 tubers, collected from each inspected bags
Over 200 ton	1 bag per each 10 tons	1 tuber per ton

Sampling for certified seed potato

Less than 50 ton	5 bags	200 tubers
50 - 200 ton	1 bag per 10 ton	200 tubers
More than 200 ton	1 bag per 10 ton	1 tuber per ton

Sampling of potatoes imported in bags

Number of bags in consignment	Number of bags to be sampled
Less than 10	All bags
11 – 100	10 bags selected at random
More than 100	5%, at least 10 bags

	upto 5 containers	Sample from each container Samples required to be drawn		
	apto sentainers	Sample from each containers but not less than 5 samples		
	6-30 containers	Sample in every 3 containers but not less than 5 samples		
	31 or more	sample in 1 of every 5 containers but not less than 10		
Sampling of polatoesmorported as looke consignmentainers but not less than 10				
	containers			
Quantity philotic to hally carried out by the slowland be of subsamples and assal quentity				
• Sast of sampling of sead in bulk from storage mineral model of the traggical back from storage of samples is used. Alternatively Nobbe				
Trief is used for sampling of seed from babged cargo case of sampling of seed from stolage bins a sampler is used. Alternatively Nobbe				
Less than 10 ton Ther is used for sampling of seed from bagged cargo less, 1 litre In case of propagating plant material such as bulbs/ tubers/ cuttings/ saplings etc., atleast				
• In case of propagating plant material such as bulbs/ tubers/ cuttings/ saplings etc., atleast				
11-50 ton of units are sampled for inspection in 8 subsamples 1.5 littreents In case of propagating plant material such as builts/ tubers/ cuttings/ saplings etc., atleast				

MoreIthean 400 tomall consignments cent per cent of submitted samples at the litrout.

• ISTA rules provide minimum weight of submitted samples for various agricultural,

Not work units are sampled for inspection in passe of bulk consignments. In case of small consignments cent per cent inspection is carried out.

Strifting for seed lots in bags or will after the gray of inform size

horticultural and tree seeds as given below submitted samples for various agricultural, horticultural and tree seeds as given below.